Is Schooling of Migrants' Children More Like That of Their Parents, Their Cousins, or Their Neighbours?

Pedro Telhado Pereira
Universidade Nova de Lisboa, CEPR and IZA

Lara Patrício Tavares
Universidade Nova de Lisboa

A natural way to look for signs of assimilation in migrants children is to compare their educational attainment to that of natives of the same age cohort (neighbours). However, background counts in these matters, so we look at the educational attainment of the previous generation (parents) as well as their social status. Using data for Portuguese in both France and Portugal together with data on the French, we show that the educational attainment of the second generation in France is much closer to that of the French than to that of those who stayed in Portugal (cousins). In this sense we can speak of assimilation.

On peut détecter les signes d'assimilation chez les enfants d'immigrants en comparant leurs résultats scolaires avec les enfants indigènes de la même cohorte d'âge (voisins). C'est la façon normale de procéder. Toutefois, les antécédents familiaux doivent être pris en compte dans ce type de comparaison. Il faut donc examiner les résultats scolaires de la génération précédente (parents) et tenir compte de leur statut social. En nous servant des données relatives aux Portugais de France et du Portugal, ainsi que des données relatives aux Français, nous avons constaté que la réussite scolaire de la deuxième génération de Portugais de France se rapprochait davantage de celle des Français que de celle des Portugais du Portugal (cousins). Nous pouvons dans ce sens parler d'assimilation.

Introduction

According to the French Census, 649,714 Portuguese were living in France in 1990, which makes the Portuguese community the largest foreign community in France. This is the result of a massive migration that took place between the mid-1960s and mid-1970s. It is estimated that in just three years (1969-1971) 357,101 Portuguese arrived in France (Baganha, 1994). It was only after 1974-1975, with the change of French migration policy following the first oil shock that emigration to France returned to values close to those registered in the early 1960s.

Key words /Mots-clefs: Assimilation; migration; education/éducation; young migrants/jeunes migrants

© 2000 by PCERII. All rights reserved./Tous droits réservés.
ISSN: 1488-3473

JIMI/RIMIVolume 1 Number/numéro 4 (Fall/automne 2000):443-459
It is well known that the Portuguese workers who migrated to France between late 1960s and early 1970s were poorly educated. It could not be otherwise. The average schooling of the Portuguese population was low, and these migrants came essentially from rural areas where educational attainment was even lower.¹

We wished to find out how much better the children of these migrants have done regarding educational attainment, as this can be a sign of assimilation (Gang & Zimmermann, 2000; Silberman & Fournier, 1998; Vallet, 1996). Their performance can be evaluated in different ways depending on the comparison term.

When comparing the educational performance of the migrants' children with that of their parents, we obviously expect a huge difference. First, the parents have an extremely poor educational attainment; second, there is an increasing trend to higher attainment in average education both in Portugal and France.

Another way of measuring second-generation success in terms of educational qualifications is by comparing the children of migrants with their cousins, that is, the same generation that stayed in the home country. Again, migrants' children are expected to have higher qualifications as the minimum school-leaving age in France is 16 years old whereas in Portugal it is 15, and the average education level in France is higher than in Portugal.

Finally, we compare migrants' children with French children. In this case we must be careful about what we are comparing. Because the first-generation migrants belonged in general to a low social class, we must control for social background.

Although it can be interesting to observe that Portuguese migrants' children are doing much better than their parents or cousins, only a comparison with neighbours enables us to properly address the question of their assimilation. After all, it is with the French that the migrants' children compete in the labour market, and their success in obtaining high qualifications is the most obvious way to rise socially.

In short, this article studies the question of the assimilation of Portuguese migrants' children. This is a subject that has received little attention, which is strange considering that 4.5 million Portuguese were living abroad in 1995-1996. To put it in perspective, this number represents 50% of the residents in Portugal.

The following section describes the datasets and variables and provides some descriptive statistics. The subsequent section explains the estimation procedure, and following this the results of the estimations are presented. A summary and the conclusions are presented in the final section.

Datasets, Variables Used, and Some Descriptive Statistics

Datasets
The datasets used are the 1995 wave of the French Labour Force Survey (Enquête Emploi) and a sample from the 1995 Portuguese Personnel Records (Quadros...
IS SCHOOLING OF MIGRANTS' CHILDREN

do Pessoa). The Portuguese Personnel Records (Quadros do Pessoa) result from survey data that the Portuguese Ministry of Employment collects annually from all firms with wage-earners (around 140,000 establishments and 2 million individuals). The survey contains detailed information on the characteristics of firms and workers (Pereira & Lima, 1999). From the 1995 sample a random subsample of 46,992 observations was generated.

The French Labour Force Survey is conducted yearly and covers about 150,000 individuals older than 15 years. This survey is used to assess unemployment, employment, and underemployment. It includes information about individual characteristics such as nationality, country of birth, date of arrival in France, and education, among others; some additional information about the family; and detailed information on the position in the labour market. There is information on both occupation and profession, wages and additional earnings, second activity, job search, job insecurity, and so on. The random sample for 1995 contains 151,146 observations. From this dataset we selected a subsample of Portuguese or individuals born in Portugal (migrants), which contains 1,958 observations. More than 98% of the Portuguese for which we had information on the country of birth were born in Portugal. Another subsample was selected including all the French people (138,528 observations)—neighbours.

There are two main differences between the datasets used. First, the French dataset is a random sample of the population resident in France, whereas the Portuguese dataset is a random sample of employed people, excluding military, civil servants, and self-employed. The second difference is that the French dataset contains information concerning the fathers' jobs, whereas the Portuguese dataset does not.

In order to overcome the first difference referred to above, we considered only employed people in both migrants' and neighbours' samples. Moreover, only individuals between 25 and 65 years of age were considered, in order to exclude those who could still be studying and those who were past retirement age.

Finally, as we wished to control for social background, we excluded from both French and migrants' samples the observations that give no information about the father's job. The sample sizes are then 1,226 for the migrants, 59,190 for the neighbours, and 37,577 for the cousins.

Using the father's job variable we could have selected only individuals whose father had a given occupation, namely, a blue-collar job. This would have made the migrants and the French more comparable. However, this would create selectivity problems. Among French people, only 37.8% have a father who is a blue-collar worker. So the neighbours subsample of individuals whose fathers are blue-collar workers is not representative. This could not be otherwise, as the sampling process did not take this into consideration. Nevertheless, the results using these subamples appear in the Appendix.
Therefore, we decided to use the samples described above and to control for the social background using a dummy variable that assumes a value of 1 if the father is a qualified blue-collar worker.

Variables Used

As mentioned above, our aim was to study second-generation educational performance because educational assimilation is an important factor in both economic and social assimilation. Unfortunately, we could not trace Portuguese migrants' children who were born in France of naturalized parents, as they have French nationality at birth and there is no information on the original nationality of their parents. Neither could we trace Portuguese descendants who automatically received French nationality at majority, as the country of birth is known only for those who were born outside France. For these reasons, this study considers only the individuals who maintained Portuguese nationality and French nationals born in Portugal.

From the vast literature on children's educational attainment (see Haveman & Wolf, 1995, for a survey or Gang & Zimmermann, 2000, for more recent references), we refer only to the factors that influence children's educational attainment for which we have information in our data.

The first factor is the individual's age as there has been a continual increase in educational attainment. The second is sex, as patterns seem to vary depending on sex. The third factor is social background.

It is well established in the literature that the social background, both in terms of parents' education and earnings, is one of the determinants of educational attainment. Better-paid fathers can choose more quality (more education) for their children and support them, thus postponing their entrance into the labour market. At the same time, parents' educational levels influence their preferences regarding the schooling of their children, as well as their aspirations for them.

We used the father's occupation as a proxy for social background, as it corresponds on average to a certain profile of earnings and education. This variable is a dummy that assumes a value of 1 if the father is a qualified blue-collar worker, or value of zero otherwise. In the latter case, and for the migrants' sample, the father is most probably an unqualified blue-collar worker, a farmer, or an agricultural worker.

For the migrants two other aspects are discussed above and are justified in earlier literature: age and date of migration. Those who migrated younger enter the educational system in the host country and are more exposed to the host society (Silberman & Founier, 1998; Dustmann, 1996). As there was a clear break in French immigration policy in 1974, we also included a dummy to take this fact into consideration.

As a result, we used the following explanatory variables: age (AGE), a dummy variable (FEMALE) equal to 1 if sex is female (0 otherwise), a dummy
variable (FQ) equal to 1 if the father is a qualified blue-collar worker (0 otherwise), a dummy variable (AM10) equal to 1 if age at time of migration was less than or equal to 10 years old (0 otherwise) and a dummy variable (DM75) equal to 1 if the date of migration was 1975 or later (0 otherwise).

The dependent variable, which is the educational level attained, needs a more detailed description. For the French dataset we have grouped the several educational levels into six broad classes: elementary or less; lower secondary; CAP after 5e; CAP-BEP after 3e; upper secondary; and BAC+2 and university. The first class corresponds to the elementary school (which in France is 5 years and in Portugal 4) and no schooling at all. The first secondary cycle is called lower secondary. This cycle is made up of four years: 6e, 5e, 4e and 3e. The last two years, the 4e and 3e, can be taken either at a comprehensive secondary school or at a vocational school, except that in the latter case the years are called 4e and 3e préparatoire. There are two ways of obtaining the Certificat d’aptitude professionnelle (CAP) with which one can enter the labour market as a qualified worker. One is to complete one more year at a vocational school after the 3e préparatoire—the level called CAP-BEP after 5e. The other is to undertake two more years at a vocational school after having completed the 3ème at a comprehensive secondary school—the level called CAP-BEP after 3e. In the latter case an individual could choose to take the Brevet d’études professionnelles (BEP) instead. The upper secondary corresponds to the second secondary cycle. This cycle begins with the 2e and ends with the terminale in a total of three years. If a student wishes to study beyond the terminale he or she must obtain a certificate, which differs according to the branch followed. The most common is the Baccalauréat d’enseignement général (BAC). The BAC+2 and university corresponds to all types of higher education.

As shown by the description above, there are two distinct paths in the French educational system: the vocational path and the academic path. They are parallel and it is impossible to rank them. They are qualitatively different. To present some results though, we do not distinguish between the paths, but show the results by years of education, and both correspond to 9 to 12 years of education.

For the Portuguese dataset we used the minimum years needed to obtain each level of education as only the academic path is relevant. The vocational path exists, but is insignificant as few people take it.

Some Descriptive Statistics

Table 1 contains some descriptive statistics of the migrants, neighbours, and cousins samples, as well as of the migrants subsample made up of migrants who know their arrival date in France.

The most striking aspect of these statistics is the difference in educational level between the neighbours sample and the other three samples. The great majority of the Portuguese, migrants or not, have 9 years of education or less,
Table 1
Descriptive statistics

<table>
<thead>
<tr>
<th></th>
<th>Migrants</th>
<th>Migrants knowing age at migration</th>
<th>Neighbours</th>
<th>Cousins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations</td>
<td>1226</td>
<td>432</td>
<td>59,190</td>
<td>37,577</td>
</tr>
</tbody>
</table>

Percentage of migrants and neighbours in each educational level

1- Elementary or less
 - Migrants: 55.95%
 - Neighbours: 54.40%
 - Cousins: 12.35%

2 - Lower secondary
 - Migrants: 14.11%
 - Neighbours: 15.51%
 - Cousins: 9.48%

less than or equal to 9 years (1+2)
 - Migrants: 70.06%
 - Neighbours: 69.91%
 - Cousins: 21.83%

3 - CAP-BEP after 5ème
 - Migrants: 14.76%
 - Neighbours: 14.81%
 - Cousins: 22.18%

4 - CAP-BEP after 3ème
 - Migrants: 7.34%
 - Neighbours: 7.18%
 - Cousins: 14.30%

5 - Upper secondary
 - Migrants: 4.40%
 - Neighbours: 5.32%
 - Cousins: 16.16%

9-12 years (3+4+5)
 - Migrants: 26.50%
 - Neighbours: 27.31%
 - Cousins: 52.64%

6 - BAC+2 & University
 - Migrants: 3.43%
 - Neighbours: 2.78%
 - Cousins: 25.52%

Percentage of cousins in each educational level

 1- 4 years or less: 49.70%
 2- 6 years: 18.20%
 3- 9 years: 14.00%
 less than or equal to 9 years (1+2+3): 81.90%
 4- 11 or 12 years: 12.50%
 5- 14 years or more: 5.60%

Explanatory variables

 AGE (average): 40.73
 FEMALE (%): 41.52
 FQ (%): 34.99
 AM10 (%): 26.85
 DM75 (%): 28.01

whereas fewer than a quarter of the neighbours have that educational level (21.8%). Among the Portuguese the cousins show the highest percentage (81.2%). The migrants and the migrants subsample have identical percentages (70.1% and 69.9% respectively). The reverse is seen in the next educational level (9-12 years of education). Most of the neighbours are at this level (52.6%) whereas just over a quarter of the migrants have a CAP-BEP certificate or have completed upper secondary (26.5% for the migrants, 27.3% for the migrants’ subsample). The percentage of cousins with upper secondary is half that of the migrants, 12.5%.

Regarding higher education, there is also a great difference between the French and the Portuguese. Approximately one out of four neighbours has some kind of higher education, but only 3% of the migrants have a BAC+2 or a university degree. Here the cousins show a slight advantage relative to the migrants, as 5.6% have a higher education.

It is worth noting that the samples described above include individuals from 25 to 65 years of age—the average being 40.7, 40.7, 39, and 39.5 for the migrants, neighbours, and cousins samples and migrants subsample.
respectively. This means that within each sample are heterogeneous groups regarding educational attainment, as the younger cohorts are expected to be more qualified.

As observed by Pereira and Tavares (1999), who describe where Portuguese migrants in France can be found, individuals older than 35 are those who determine such a poor educational performance. In the 25-35 cohort of the migrants sample the picture is substantially better. In this cohort only 41.6% have 9 years of education or less, which represents a reduction of 30% relative to the whole sample. However, this percentage is still much higher than that for the neighbours cohort (9.9%). The reduction of the first educational level is almost entirely compensated for by an increase in the second educational level. Approximately half of the migrants aged 25 to 35 have 9 to 12 years of education (51.4%), which puts them only slightly behind the neighbours in this level; 58.7% of the 25-35 cohort in the neighbours sample has 9 to 12 years of education. However, in higher education, the gap between migrants and neighbours increases. The percentage of migrants studying beyond secondary school is increasing, but not enough to match the neighbours. In the cohort considered 6.9% of the migrants have a BAC+2 or a university degree, as do 31.7% of the neighbours.

Estimation Procedure

As mentioned above, the most accurate way to study the assimilation issue in terms of educational attainment would be to analyse the Portuguese descendants' performance. However, we have data only about the individuals who were born in Portugal.

It would be easy to identify the second generation if we knew the arrival date for all individuals. There is no doubt that someone who entered France at the age of 10 or younger can be considered a second-generation migrant, but only about one third of the observations contained information on the arrival date. As a consequence, the migrants subsample of those who arrived in France younger than 11 is too small. We therefore chose not to do separate estimations for different age-at-migration cohorts. Instead, we ran a multinomial logit for the whole migrants sample. We then used the results of this estimation to predict probability of individuals 25 and 45 years old to have each of the educational levels, assuming that they represent the children's and parents' generations respectively. These probabilities are discussed in the remainder of the article.

It is worth noting that 91% of the Portuguese migration to France took place before 1976 (calculations based on Baganha's, 1994, estimates), that is, 20 years before 1995. So most of the 45-year-old individuals (in 1995) who migrated as
workers must be the parents of those who are 25 and belong to the second
generation. In fact, 80% of the individuals aged 25 in the migrants’ sample, and for
whom the migration date is known, migrated when they were younger than 10
years old, and the individuals who are 45 migrated when they were 20 on average.

In order to compare the Portuguese migrants’ children’s educational
attainment to that of their neighbours and cousins, we performed separate
estimations for migrants, French, and Portuguese. In all cases we used the
results of the estimations to predict the probability of the individuals who are
25 and 45 years old having each of the educational levels.

As there are two parallel paths in the French secondary school, we used a
multinomial logit (Greene, 1997; Abowd, Kramarz & Margolis, 1999) to explain
the probability of being in each of the categories described above. In the
Portuguese case we could have used an ordered probit (the dependent variable
diffs from the French to the Portuguese dataset as can be seen in the
Appendix), but we preferred to use the same method as in the French case.\(^5\)

We use predicted values to avoid small numbers problems and disturbances
that could affect a particular cohort. This technique also allows us to create
fictitious cohorts as shown below (e.g., someone who is 25 in 1995 migrating
before 1975 when he was older than 10).

In order to compare results we aggregated the levels in like manner for
both datasets. The levels chosen were, therefore, 9 years of education or less, 9
to 12 years of education, and more than 12 years of education. Even if the
estimated results presented below refer only to these levels, they were not the
dependent variables used in the estimations as can be seen in the Appendix.

Estimation Results

We start with the results from the estimation where the explanatory variables
were AGE, FEMALE, and FQ—a dummy variable equal to 1 if the father is a
qualified blue-collar worker (0 otherwise)—for the French dataset. In the
Portuguese dataset only AGE and FEMALE were used. See the Appendix for
the estimation results.

<table>
<thead>
<tr>
<th></th>
<th>Migrants</th>
<th>Neighbours</th>
<th>Cousins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FQ=1</td>
<td>FQ=0</td>
<td>FQ=1</td>
</tr>
<tr>
<td>Aged 25 years old</td>
<td>9 or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22.1</td>
<td>32.9</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>71.1</td>
<td>60.6</td>
<td>74.2</td>
</tr>
<tr>
<td></td>
<td>6.8</td>
<td>6.5</td>
<td>16.3</td>
</tr>
<tr>
<td></td>
<td>9 or less</td>
<td>76.5</td>
<td>87.3</td>
</tr>
<tr>
<td></td>
<td>21.9</td>
<td>11.7</td>
<td>65.2</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>0.9</td>
<td>10.9</td>
</tr>
</tbody>
</table>

\(^5\)
Comparing the migrants with the neighbours whose parents have the same job qualifications, Table 2 shows that the probability of a young migrant male having between 9 and 12 years of education is close to that of a young neighbour. This probability is about 70% if the individual’s father is a qualified blue-collar worker and about 60% otherwise.

The big difference between the second-generation migrants and the neighbours of the same age (males) is in the extremes, which are reversed. Whereas a young migrant whose father is not a qualified blue-collar worker has a 33% probability of having 9 years of education or less, a young neighbour in the same situation has the same probability of having more than 12 years of education. At the same time, this neighbour has only a 7% probability of having 9 years of education or less, whereas the young migrant has about the same probability of having more than 12. The same pattern is found for the qualified father’s case.

A comparison of second-generation migrants (males) with their cousins, that is, the young Portuguese who stayed in Portugal, also shows a big difference, but at a different level. The cousins still have a strong probability of having at most 9 years of education. As shown above, this no longer holds for the young migrants. In this context the young migrants’ performance is much closer to that of their neighbours than to that of their cousins.

Finally, a comparison of the educational levels of the two generations shows that the migrants’ children improved dramatically relative to their parents. The first-generation migrant has a high probability of having only 9 years of education or less: 76.5% if he has a qualified blue-collar worker father, 87.3% otherwise. As shown above, this does not occur with their children. Among the neighbours, differences between children’s and parents’ generations are substantially less pronounced. The jump in qualifications by the second-generation migrants was greater than that of the neighbours’ children, as could be expected. This jump was fairly weak for the cousins. A 25-year-old man in Portugal has only 15% less probability of having at most 9 years of education than does his father, and only 1% more of having higher education. So the parents’ migration to France increased the educational qualifications of their children; if they had stayed in Portugal, their children’s qualifications would have been significantly lower.

For women the pattern is similar to that described above as shown in Table 3. In general, though, they are at a disadvantage compared with men except in the case of higher education.

It is interesting to note that young, female, second-generation migrants followed their French neighbours in a greater attainment of higher education than the previous generation. For the neighbours this increase in the probability of having higher education was such that young French women actually are more likely to have more a BAC+2 or a university degree than young French
men. For migrants this already occurs in the parents' generation as the percentage in the class "more than 12" is higher for females.

Another striking feature shown in Tables 2 and 3 is the influence of the father's job qualification on educational attainment. Having a father who is a qualified blue-collar worker increases the probability of the migrants' children of having at least 9 years of education, both for women and men. The reverse occurs for young neighbours. The reason for this is that being a qualified blue-collar worker is an advantage in the migrants' universe and a disadvantage in that of the neighbours.8

As we had information about the age and date of migration for a migrants' subsample, we ran another regression. In this new estimation the dependent variables were AGE, FEMALE, FQ, AM10—a dummy variable equal to 1 if age at time of migration was less than or equal to 10 years (0 otherwise)—and DM75—a dummy variable equal to 1 if the date of migration was 1975 or later (0 otherwise). The regression results show that having migrated young is significant for all education levels.

Table 3
Predicted probability of a female to have each of the educational levels

<table>
<thead>
<tr>
<th>Age group</th>
<th>Migrants</th>
<th>Neighbours</th>
<th>Cousins</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 years old</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 or less</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More than 12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age group</th>
<th>Migrants</th>
<th>Neighbours</th>
<th>Cousins</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 years old (Parents)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 or less</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More than 12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 This is a fictitious individual and it is used to see the effect of the dummy variable DM75

Table 4
Predicted probability of a male aged 25, whose father is a qualified blue-collar worker, to have each of the educational levels

<table>
<thead>
<tr>
<th>Age group</th>
<th>Migrants, AM10=1</th>
<th>Migrants, AM10=0</th>
<th>Neighbours</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 or less</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More than 12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5
Predicted probability of a female aged 25, whose father is a qualified blue-collar worker, to have each of the educational levels

<table>
<thead>
<tr>
<th>Age group</th>
<th>Migrants, AM10=1</th>
<th>Migrants, AM10=0</th>
<th>Neighbours</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 or less</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More than 12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tables 4 and 5 show the predicted values from of this new estimation. In the case of FQ=1 (having a father who is a qualified blue-collar worker) we can assume that the social status is similar for neighbours and migrants.
Moreover, as shown above, having a father who is a qualified blue-collar worker increases the migrants' children's education. However, these tables show that other factors are involved.

Indeed, having arrived in France at 10 years of age or younger is a determinant factor. Those migrants' children who arrived younger than 11 have a high probability of having 9 to 12 years of education, but the same does not occur for those who arrived older, especially for girls. On the other hand, it is clear now that the catch-up with the neighbours pertained to those migrants' children who arrived at the age of 10 or younger.

Moreover, more recent migrants—those who migrated after 1974—seem to value education more highly than those who migrated earlier, as they are more likely to have higher levels of education. Yet they also have a higher probability of having the lowest education level.

Table 6
Predicted probability of a male aged 25, whose father is a qualified blue-collar worker, to have each of the educational levels

<table>
<thead>
<tr>
<th></th>
<th>Migrants, AM10=1</th>
<th>Neighbours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DM75=1</td>
<td>DM75=0</td>
</tr>
<tr>
<td>1 - Others + Elementary</td>
<td>2.2</td>
<td>0.8</td>
</tr>
<tr>
<td>2 - Lower Second.</td>
<td>16.5</td>
<td>11.1</td>
</tr>
<tr>
<td>less than or equal to 9 years (1+2)</td>
<td>18.7</td>
<td>11.8</td>
</tr>
<tr>
<td>3 - CAP-BEP after 5 ème</td>
<td>28.1</td>
<td>45.6</td>
</tr>
<tr>
<td>4 - CAP-BEP after 3 ème</td>
<td>10</td>
<td>32.5</td>
</tr>
<tr>
<td>5 - Upper Secondary</td>
<td>39.1</td>
<td>8</td>
</tr>
<tr>
<td>9-12 years (3+4+5)</td>
<td>77.2</td>
<td>86</td>
</tr>
<tr>
<td>BAC+2 & Univ.</td>
<td>4.1</td>
<td>2.1</td>
</tr>
</tbody>
</table>

In order to determine reason for this we deepened our analysis and looked at less aggregate levels of education.

Table 6 shows that the decline in the probability of having an intermediate level of education (9-12 years) for the male migrants who entered France after 1974 and younger than 11, and whose father was a qualified blue-collar worker, is due to a drastic reduction in the number who took the vocational paths. Whereas a young male migrant who entered France before 1975 had almost a 50% probability of having a CAP-BEP after 5e, this percentage drops to 28% if the young male migrant arrived in France after 1974. At the same time, to have entered France after 1974 increases the probability of having upper secondary from 8% to about 40%.

Table 6 also shows that the probability of having followed the vocational path is less for a young male migrant who arrived in France after 1974 than for a neighbour with the same background. This is an interesting result because it is believed that the Portuguese migrants’ children prefer the vocational path to the academic one (Cunha, 1989; Dubet, 1989; Fernandes, 1989; Silberman & Fournier, 1998; Tribalat, 1995). This is no is longer the case for the more recent migrants who entered France still in childhood.
Summary and Conclusions

Educational attainment can be seen as an indicator of young migrants' assimilation. Therefore, in this article we study Portuguese migrants' children's educational attainment in order to assess their assimilation. For this we need comparison terms. The Portuguese migrants' children are then compared with their parents, their cousins (the same generation who stayed in Portugal), and their neighbours (natives of the same age cohort).

Taking the individuals who are 25 and 45 as representatives of the two generations, children and parents respectively, we predicted their educational attainment using the results of multinomial logits. We ran separate regressions for each of the samples: migrants, cousins, and neighbours.

In the first regression the explanatory variables were age (AGE), sex (FEMALE), and father's occupation (FQ)—as a proxy for social background. The last variable is a dummy that takes a value of 1 if the father is a qualified blue-collar worker and a value zero otherwise. In the second regression we added two more dependent variables: age at migration (AM10) and arrival date (DM75). These variables are also dummy variables; the first assumes a value of 1 if age at time of migration was less than or equal to 10 years and the second if date of migration was 1975 or later.

Controlling for social background, the difference between migrants and neighbours lies in the lowest and highest education levels. The migrants have a significantly higher probability of having 9 years of education or less than do their neighbours and an equally significantly lower probability of having higher education.

However, the migrants' performance is much better than that of their cousins. The cousins still have a strong probability of having at most 9 years of education. In this sense we can say that assimilation is taking place.

Comparing the two generations, we have seen that the rise in qualifications by the second generation relative to that of their parents was greater than that of the neighbours, and much greater than that of the cousins. So the parents' migration to France increased the educational qualifications of their children, due either to choice or to more stringent educational laws.

Given that one of the top priorities of the Portuguese government is to increase educational levels, it is important to understand why the rise in qualifications by the second generation relative to that of their parents' was much greater than that of the cousins. Knowing why and how this happened can help in the implementation of reforms in Portugal. Was it the better standard of living? Was it the fact that they were integrated into a more pro-education society? Was it their natural attitude, the same that made their parents migrate? These are questions for further research.

The migrants' children who have better performances have a father who is a
qualified blue-collar worker. Yet the most determinant factor for these better performances is the age of entry. In fact, the catch-up with the neighbours is due essentially to those migrants' children who arrived younger than 11 years old.

Finally, the strong preference for vocational paths is no longer a reality for the most recent male migrants entering France still in childhood. This is an important result as it opens the way for a catch-up in higher education where the difference between migrants and neighbours remains sizeable.

It is worth noting that we looked only at a part of the second generation, namely, that made up of the individuals who still have Portuguese nationality or were born in Portugal. As a consequence, the educational performance of the Portuguese migrants' children studied here may be underestimated. It is reasonable to suppose that the educational performance of Portuguese migrants' children who were born in France is better. Whether the assimilation of young Portuguese in French society is a success story or not is an open question. Our results suggest a positive answer, although further studies from other social sciences are needed to confirm this conclusion.
Appendix

Model 1

Multinomial logit with AGD, FEMALE and FQ as independent variables

For the neighbours' sample

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Lower secondary</th>
<th>CAP-BEP after 5thme</th>
<th>CAP-BEP after 2thme</th>
<th>Upper secondary</th>
<th>BAC+2 & Univ. degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>4.507108**</td>
<td>3.391281**</td>
<td>7.480322**</td>
<td>6.070308**</td>
<td>7.040465**</td>
</tr>
<tr>
<td>Agd</td>
<td>-.1064993**</td>
<td>-.0981874**</td>
<td>-.1617805**</td>
<td>-.1271278**</td>
<td>-.1382082**</td>
</tr>
<tr>
<td>Female</td>
<td>0.1094546**</td>
<td>-.8682383**</td>
<td>-.2801966**</td>
<td>-.0635236</td>
<td>-.0428161</td>
</tr>
<tr>
<td>FQ</td>
<td>0.00663587</td>
<td>.1328295**</td>
<td>-.0836456**</td>
<td>-.4650367**</td>
<td>-.1044736**</td>
</tr>
</tbody>
</table>

Number of obs: 59190

\[\text{chi}^2(15): 12737.64\]

Prob > \text{chi}^2: 0.0000

Pseudo R^2: 0.0619

Dependent variable: education by levels

Constant: Elementary or less

For the migrants' sample

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Lower secondary</th>
<th>CAP-BEP after 5thme</th>
<th>CAP-BEP after 2thme</th>
<th>Upper secondary</th>
<th>BAC+2 & Univ. degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>4.340148**</td>
<td>4.945561**</td>
<td>6.531067**</td>
<td>5.098564**</td>
<td>4.386866**</td>
</tr>
<tr>
<td>Agd</td>
<td>-.1467148**</td>
<td>-.1573046**</td>
<td>-.238223**</td>
<td>-.2069837**</td>
<td>-.1966643**</td>
</tr>
<tr>
<td>Female</td>
<td>.1953784</td>
<td>.0131957</td>
<td>.0217653</td>
<td>.0238677</td>
<td>.0260669</td>
</tr>
<tr>
<td>FQ</td>
<td>.4522697**</td>
<td>.7842271**</td>
<td>1.122816**</td>
<td>.5754984</td>
<td>.7577675</td>
</tr>
</tbody>
</table>

Number of obs: 1226

\[\text{chi}^2(15): 582.05\]

Prob > \text{chi}^2: 0.0000

Pseudo R^2: 0.1787

Dependent variable: education by levels

Constant: Elementary or less

For the cousins' sample

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>6 years</th>
<th>9 years</th>
<th>11 or 12 years</th>
<th>14 years or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>.028890E**</td>
<td>.1202027</td>
<td>1.86706**</td>
<td>-0.2889040**</td>
</tr>
<tr>
<td>Agd</td>
<td>-.0801993**</td>
<td>-.0304763**</td>
<td>-.0882997**</td>
<td>-.0480439**</td>
</tr>
<tr>
<td>Female</td>
<td>-.0448693</td>
<td>.0522437</td>
<td>.2042913**</td>
<td>.0058797</td>
</tr>
</tbody>
</table>

The first educational level (4 years or less) is the comparison group

* significant at a 5% level
** significant at a 1% level

The numbers in parentheses are standard deviations
Model 2
Multinomial logit with AGD, FEMALE, FQ, AM10 and DM75 as independent variables

For the migrants' sub-sample of those who know their arrival date in France

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Lower secondary</th>
<th>CAP-BEP after 5ime</th>
<th>CAP-BEP after 3ime</th>
<th>Upper secondary</th>
<th>BAC+2 & Univ. degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>5.02013**</td>
<td>4.84321**</td>
<td>5.028921**</td>
<td>150654</td>
<td>-0.0711316</td>
</tr>
<tr>
<td>Agd</td>
<td>-1.133405</td>
<td>-1.626803</td>
<td>-2.206474</td>
<td>-226632</td>
<td>-2750077</td>
</tr>
<tr>
<td>Female</td>
<td>0.598955*</td>
<td>0.105819</td>
<td>-0.271665</td>
<td>-0.1178639</td>
<td>0.8878349</td>
</tr>
<tr>
<td>Fq</td>
<td>0.3478104</td>
<td>0.2594272</td>
<td>1.34415**</td>
<td>0.4509175</td>
<td>0.7004783</td>
</tr>
<tr>
<td>Am10</td>
<td>-0.341094</td>
<td>-0.3746689</td>
<td>-0.485039</td>
<td>-0.5069559</td>
<td>-0.6395462</td>
</tr>
<tr>
<td>DM75</td>
<td>2.672098**</td>
<td>2.823925</td>
<td>2.283925</td>
<td>0.890039</td>
<td>-10300762</td>
</tr>
</tbody>
</table>

The first educational level (Elementary or less) is the comparison group
* significant at a 5% level
** significant at a 1% level
The numbers in parentheses are standard deviations

Results obtained from the estimations using the European Community Household Panel
Predicted probability of a 25 years old individual to have each of the educational levels

<table>
<thead>
<tr>
<th></th>
<th>Cousins</th>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 or less</td>
<td>71.0</td>
<td>66.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-12</td>
<td>22.0</td>
<td>23.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>More than 12</td>
<td>7.0</td>
<td>10.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results obtained from the estimations using the sub-samples where all individuals have a blue-collar worker father
Predicted probability of a 25 years old male to have each of the educational levels

<table>
<thead>
<tr>
<th></th>
<th>Migrants</th>
<th>Neighbours</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 or less</td>
<td>20.1</td>
<td>14.8</td>
</tr>
<tr>
<td>9-12</td>
<td>69.6</td>
<td>64.8</td>
</tr>
<tr>
<td>More than 12</td>
<td>10.3</td>
<td>20.4</td>
</tr>
</tbody>
</table>

Predicted probability of a 25 years old female to have each of the educational levels

<table>
<thead>
<tr>
<th></th>
<th>Migrants</th>
<th>Neighbours</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 or less</td>
<td>23.5</td>
<td>17.9</td>
</tr>
<tr>
<td>9-12</td>
<td>63.4</td>
<td>58.8</td>
</tr>
<tr>
<td>More than 12</td>
<td>13.2</td>
<td>23.2</td>
</tr>
</tbody>
</table>
Acknowledgements
This article was written under the scope of the "Labour Demand, Education, and the Dynamics of Social Exclusion" project, co-ordinated by CEPR, and "Public Funding and Private Returns to Education" co-ordinated by ETLA, both financed by the European Commission—contract numbers SOE2-CT97-3052 and SOE2-CT98-2044. We thank two anonymous referees for their helpful comments and Pedro Martins at the Universidade Nova de Lisboa for helping us with the Portuguese data. Additional funding from the Fundação para a Ciência e Tecnologia, under contract PRAXIS XXI 2/2.1/CSH/781/95 is also gratefully acknowledged. The usual disclaimer applies. This article was written while Pedro Pereira was an invited researcher at the Banco de Portugal.

Notes
1 The illiteracy rate in rural areas was 45% in 1960 (Pereira & Tavares, 1999).
2 The description of this subsample can be found in Pereira & Tavares (1999).
3 As pointed out by one of the referees, the Portuguese dataset used could be misleading as it does not include civil servants that have more education, on average. We confirmed this using the European Community Household Panel for Portugal, which is a random sample of the Portuguese population. However, the estimation results obtained with this dataset (see appendix) are very similar to the ones in the text.
4 even though they are still working, as everyone in the samples is employed.
5 "The cost of using an unordered model when the true model is ordered is a loss of efficiency rather than consistency" (Amemiya, 1985, p. 293).
6 These differences are much smaller if we consider only the children of blue-collar workers, but they persist (see Appendix).
7 In Portugal, only the children who entered school after 1986 had to complete 9 years of education. Before that date only the first six years of education were compulsory.
8 For the subsamples where all individuals have a father who is a blue-collar worker, having a qualified blue-collar worker father is also a plus for the neighbours. So, in this case to have a qualified blue-collar worker father increases the probability of both French and migrants' children of having at least 9 years of education.
9 In 1998 the percentage of Portuguese having at least upper secondary education (20%) was only one third of the OECD average (61%) (OECD, 2000). Even for the group aged 25-34, the difference is large - 29% versus 72%.
10 Because a still better performance is expected for the French of Portuguese origin.

References

